wisdom
Doug McIlroy, the inventor of Unix pipes and one of the founders of the Unix tradition, had this to say at the time [McIlroy78]:
(i) Make each program do one thing well. To do a new job, build afresh rather than complicate old programs by adding new features.
(ii) Expect the output of every program to become the input to another, as yet unknown, program. Don't clutter output with extraneous information. Avoid stringently columnar or binary input formats. Don't insist on interactive input.
(iii) Design and build software, even operating systems, to be tried early, ideally within weeks. Don't hesitate to throw away the clumsy parts and rebuild them.
(iv) Use tools in preference to unskilled help to lighten a programming task, even if you have to detour to build the tools and expect to throw some of them out after you've finished using them.
He later summarized it this way (quoted in A Quarter Century of Unix [Salus]):
This is the Unix philosophy: Write programs that do one thing and do it well. Write programs to work together. Write programs to handle text streams, because that is a universal interface.
Rob Pike, who became one of the great masters of C, offers a slightly different angle in Notes on C Programming [Pike]:
Rule 1. You can't tell where a program is going to spend its time. Bottlenecks occur in surprising places, so don't try to second guess and put in a speed hack until you've proven that's where the bottleneck is.
Rule 5. Data dominates. If you've chosen the right data structures and organized things well, the algorithms will almost always be self-evident. Data structures, not algorithms, are central to programming.[9]
Rule 6. There is no Rule 6.
Ken Thompson, the man who designed and implemented the first Unix, reinforced Pike's rule 4 with a gnomic maxim worthy of a Zen patriarch:
Rule of Modularity: Write simple parts connected by clean interfaces.
Rule of Composition: Design programs to be connected to other programs.
Rule of Separation: Separate policy from mechanism; separate interfaces from engines.
Rule of Simplicity: Design for simplicity; add complexity only where you must.
Rule of Transparency: Design for visibility to make inspection and debugging easier.
Rule of Robustness: Robustness is the child of transparency and simplicity.
Rule of Representation: Fold knowledge into data so program logic can be stupid and robust.
Rule of Least Surprise: In interface design, always do the least surprising thing.
Rule of Silence: When a program has nothing surprising to say, it should say nothing.
Rule of Repair: When you must fail, fail noisily and as soon as possible.
Rule of Economy: Programmer time is expensive; conserve it in preference to machine time.
Rule of Generation: Avoid hand-hacking; write programs to write programs when you can.
Rule of Optimization: Prototype before polishing. Get it working before you optimize it.
Rule of Extensibility: Design for the future, because it will be here sooner than you think.